Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

catena-poly[[[tetraaquacobalt(II)]- μ-4,4'-bipyridine$\left.\kappa^{2} N: N^{\prime}\right]$ phthalate dihydrate]

Cheng-Zhi Xie, Bao-Feng Zhang, Xiao-Qing Wang,* Guang-Qiu Shen and De-Zhong Shen

Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China

Correspondence e-mail:
xqwang@mail.tsinghua.edu.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
Disorder in solvent or counterion
R factor $=0.036$
$w R$ factor $=0.084$
Data-to-parameter ratio $=13.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0] Printed in Great Britain - all rights reserved

A polymeric cobalt complex, $\left\{\left[\mathrm{Co}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]-\right.$ $\left.\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}\right) \cdot 2 \mathrm{H}_{2} \mathrm{O}\right\}_{n}$, was synthesized and its crystal structure has been determined by X-ray diffraction. The complex exhibits a polymeric structure consisting of six-coordinated $\mathrm{Co}^{\text {II }}$ units linked via $4,4^{\prime}$-bipyridine ($4,4^{\prime}$-bpy) to form a linear chain. The asymmetric unit contains only one half-molecule of the bridging ligand and two coordinated water molecules, the $\mathrm{Co}^{\mathrm{II}}$ ion and the bridging ligand lying on a twofold rotation axis. Each cobalt(II) ion is in a distorted octahedral environment with a $\mathrm{CoN}_{2} \mathrm{O}_{4}$ core; $4,4^{\prime}$-bpy acts as a bridging ligand and four O atoms from coordinated water molecules act as terminal ligands. The chains are linked to (which also lie on twofold axes) uncoordinated phthalate anions and water molecules by extensive hydrogen bonds to form a threedimensional supramolecular structure.

Comment

In recent years, metal-organic coordination polymers with one-, two- or three-dimensional structures have attracted much attention for their potential applications as photoelectric functional materials, catalysis carriers, sensors etc. (Fyfe \& Stoddart, 1997; Swieqers \& Malefetse, 2000; Cheetham et al., 1999; Kiang et al., 2000; Guilera \& Steed, 1999; Prior \& Rosseinsky, 2001). In the design and synthesis of polymeric complexes, various bridging and chelating ligands have been used extensively. Coordination and hydrogen bonds are the major linkages in these assembly systems.

Carboxylates (Yaghi et al., 1996; Eddaoudi et al., 2001) and pyridyls (Noro et al., 2002) frequently provide rigid frameworks, although the carboxylates tend to form relatively more rigid frameworks as a result of the potential bidentate coordination of their carboxylate groups. Recently, the mixedlinker systems of both carboxylates and pyridyls have proved effective for the preparation of novel coordination polymers

Figure 1
View of $\left[\mathrm{Co}\left(4,4^{\prime} \text {-bpy }\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]_{n} \cdot n($ phth $) \cdot 2 n \mathrm{H}_{2} \mathrm{O}$, with the unique atomlabelling scheme (phth is phthalate). Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted

Received 7 June 2004
Accepted 13 October 2004
Online 30 October 2004

Figure 2
Packing diagram showing the two-dimensional structure; for clarity, uncoordinated phth anions and water molecules have been omitted. Dashed lines indicate hydrogen bonds.
(Geraghty et al., 1999; Kitagawa et al., 1995; Liu et al., 2002; Lu et al., 1999; Shi et al., 2000; Tao et al., 2002). In this research, we planned to synthesize a multidimensional complex structure constructed from a bidentate $4,4^{\prime}$-bipyridine ligand ($4,4^{\prime}$-bpy) and multidentate phthalate ligand (phth). However, contrary to our expectation, the phth ligand did not participate in the coordination. Thus we obtained a new one-dimensional polymeric complex $\left[\mathrm{Co}\left(4,4^{\prime} \text {-bpy }\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]_{n} \cdot n(\mathrm{phth}) \cdot 2 n \mathrm{H}_{2} \mathrm{O}$, (I). Its structure consists of a linear chain, which is linked to uncoordinated phth anions and water molecules by extensive hydrogen bonds to form a three-dimensional supramolecular structure.

2n $\mathrm{H}_{2} \mathrm{O}$

The structure of the title complex is shown in Fig. 1. Selected bond lengths and angles are listed in Table 1. The asymmetric unit contains only one half of the chemical formula unit, which consists of half a phthalate anion, half a $4,4^{\prime}$-bpy molecule, two coordinated water molecules and one uncoordinated water molecule in addition to half a cobalt(II) ion. The cobalt(II) ion lies on a rotation axis, which also runs along the axis of the bridging ligand. The coordination geometry around the cobalt ion is a distorted octahedral. Four O atoms from coordinated water molecules, which act as the terminal ligands, lie in the equatorial plane $[\mathrm{Co}(1)-\mathrm{O}(3)=$ 2.0529 (17) \AA and $\mathrm{Co}(1)-\mathrm{O}(4)=2.1158(17) \AA$] , while two independent pyridine N -atom donors are in the axial sites

Figure 3
Packing diagram showing the three-dimensional structure, with interchain hydrogen bonds (dashed lines); for clarity, H atoms have been omitted.
$\left[\mathrm{Co}(1)-\mathrm{N}(1)=2.172(3) \AA\right.$ and $\mathrm{Co}(1)-\mathrm{N}(2)^{\mathrm{ii}}=2.197(3) \AA$; symmetry code: (ii) $x, y-1, z]$. The bridge trans angle $\mathrm{N}(1)-$ $\mathrm{Co}(1)-\mathrm{N}(2)^{\text {ii }}$ is constrained to 180° by symmetry; the other trans $\mathrm{O}-\mathrm{Co}-\mathrm{O}$ angles and all of the cis $\mathrm{N}-\mathrm{Co}-\mathrm{O}$ angles are nearly 180 and 90° (Table 1), respectively. In the phthalate anion, which also lies on a twofold rotation axis, the two independent $\mathrm{C}-\mathrm{O}$ bonds are approximately equivalent, the double bond being delocalized over both $\mathrm{C}-\mathrm{O}$ bonds $[\mathrm{C}(7)-$ $\mathrm{O}(1)=1.250(3) \AA$ and $\mathrm{C}(7)-\mathrm{O}(2)=1.242(3) \AA$.

The most striking feature of the title compound, as depicted in Fig. 2, is that it consists of a linear chain. Extensive hydrogen bonds are formed between the O atoms of the coordinated water atoms $[\mathrm{O}(3)$] of cobalt ions in adjacent chains, forming two-dimensional layers. Through extensive hydrogen bonds between the cobalt(II) chains, uncoordinated phth anions and uncoordinated water molecules, a threedimensional supramolecular network is formed (Fig. 3).

Experimental

A mixture of $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.4 \mathrm{mmol}, 95.2 \mathrm{mg})$, phthalate acid ($0.4 \mathrm{mmol}, \quad 66.4 \mathrm{mg}$), $\quad 4,4^{\prime}$ bpy ($0.4 \mathrm{mmol}, \quad 76.9 \mathrm{mg}$) imidazole $(0.4 \mathrm{mmol}, 27.2 \mathrm{mg})$ and $\mathrm{H}_{2} \mathrm{O}(18.0 \mathrm{ml})$ in a 1:1:1:2500 molar ratio was sealed in a 25 ml stainless steel reactor with a Teflon liner; the mixture was heated to 443 K , kept at 443 K for 72 h , and then cooled slowly to 303 K at a rate of $3 \mathrm{~K} \mathrm{~h}^{-1}$. Red block-shaped crystals of the title complex were collected by filtration and washed with ethanol $(2 \times$ 5 ml).

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]$
$\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}\right) \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=487.32$
Monoclinic, $P 2 / c$
$a=9.511(3) \AA \AA^{2}$
$b=11.496(3) \AA$
$c=11.528(4) \AA$
$\beta=125.287(5))^{\circ}$
$V=1028.9(5) \AA^{3}$
$Z=2$

Data collection

Bruker SMART 1000 CCD areadetector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.794, T_{\text {max }}=0.898$
5821 measured reflections

Refinement

Refinement on F^{2}
$D_{x}=1.573 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 925
reflections
$\theta=2.8-26.1^{\circ}$
$\mu=0.89 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, red
$0.18 \times 0.16 \times 0.12 \mathrm{~mm}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.084$
$S=1.04$
2111 reflections
161 parameters
H atoms treated by a mixture of independent and constrained refinement

2111 independent reflections
1665 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.036$
$\theta_{\text {max }}=26.4^{\circ}$
$h=-7 \rightarrow 11$
$k=-13 \rightarrow 14$
$l=-14 \rightarrow 9$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0379 P)^{2}\right. \\
& \quad+0.3271 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.30 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.33 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Co} 1-\mathrm{O} 3$	$2.0529(17)$	$\mathrm{Co} 1-\mathrm{N} 2^{\mathrm{ii}}$	$2.197(3)$
$\mathrm{Co} 1-\mathrm{O} 4$	$2.1158(17)$	$\mathrm{O} 1-\mathrm{C} 7$	$1.250(3)$
$\mathrm{Co} 1-\mathrm{N} 1$	$2.173(3)$	$\mathrm{O} 2-\mathrm{C} 7$	$1.242(3)$
$\mathrm{O}^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{O} 3$	$175.18(10)$	$\mathrm{O} 4-\mathrm{Co} 1-\mathrm{N} 1$	$95.09(5)$
$\mathrm{O}^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{O} 4$	$86.62(7)$	$\mathrm{O} 3-\mathrm{Co} 1-\mathrm{N} 2^{\mathrm{ii}}$	$92.41(5)$
$\mathrm{O} 3-\mathrm{Co} 1-\mathrm{O} 4$	$93.81(7)$	$\mathrm{O} 4-\mathrm{Co} 1-\mathrm{N} 2^{\mathrm{ii}}$	$84.91(5)$
$\mathrm{O} 4-\mathrm{Co} 1-\mathrm{O} 4^{\mathrm{i}}$	$169.82(9)$	$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{N} 2^{\mathrm{ii}}$	180.0
$\mathrm{O} 3-\mathrm{Co} 1-\mathrm{N} 1$	$87.59(5)$		

Symmetry codes: (i) $1-x, y, \frac{1}{2}-z$; (ii) $x, y-1, z$.

Table 2
Hydrogen-bonding geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O5-H5C $\cdots \mathrm{O} 3$	0.8501 (11)	2.019 (9)	2.856 (3)	168 (4)
O5-H5B \cdots O $5^{\text {iii }}$	0.8501 (11)	2.007 (10)	2.843 (5)	167 (4)
$\mathrm{O} 5-\mathrm{H} 5 A \cdots \mathrm{O} 2^{\text {iv }}$	0.8501 (11)	1.98 (2)	2.780 (3)	156 (4)
$\mathrm{O} 4-\mathrm{H} 4 \mathrm{~B} \cdots \mathrm{O}^{\text {v }}$	0.85	1.92	2.771 (3)	174
$\mathrm{O} 3-\mathrm{H} 3 \mathrm{C} \cdots \mathrm{O}^{\text {vi }}$	0.8502 (11)	1.663 (6)	2.507 (2)	172 (3)
O3-H3B \cdots O5	0.8499 (11)	2.081 (15)	2.856 (3)	151 (3)
$\mathrm{O} 3-\mathrm{H} 3 A \cdots \mathrm{O}{ }^{\text {vi }}$	0.8499 (11)	1.904 (12)	2.716 (3)	159 (3)
Symmetry codes: $1-x,-y, 1-z$.	$2-x, y, \frac{3}{2}$	(iv) $1+x$; (v)	- $\frac{1}{2} ; \quad$ (vi)

The coordinates of the H atoms of the water molecules were determined from difference Fourier maps and refined subject to restrained $\mathrm{O}-\mathrm{H}$ distances of $0.85 \AA . \mathrm{H}$ atoms bound to C atoms could also be located in difference maps and were placed using the HFIX commands in SHELXL97 (Sheldrick, 1997). Other H atoms were positioned geometrically and refined riding $(\mathrm{C}-\mathrm{H}=0.93 \AA$, $\mathrm{O}-\mathrm{H}=0.85 \AA) . U_{\text {iso }}(\mathrm{H})$ values were fixed at $1.2 U_{\mathrm{eq}}(\mathrm{C})$ and $1.5 U_{\text {eq }}(\mathrm{O})$.

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT (Bruker, 1997; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

We thank the National Natural Science Foundation of China (No. 50132010) and the 985 Program of Tsinghua University for financial support of this work.

References

Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1998). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Cheetham, A. K., Ferey, G. \& Loisear, T. (1999). Angew. Chem. Int. Ed. 38, 3269-3292.
Eddaoudi, M., Moler, D. B., Li, H. L., Chen, B. L., Reineke, T. M., O’Keeffe, M. \& Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319-330.

Fyfe, M. C. T. \& Stoddart, J. F. (1997). Acc. Chem. Res. 30, 393-401.
Geraghty, M., Sheridan, V., Mccann, M., Devereux, M. \& McKee, V. (1999). Polyhedron, 18, 2931-2939.
Guilera, G. \& Steed, J. W. (1999). Chem. Commun. pp. 1563-1564.
Kiang, Y. H., Lee, S., Xu, Z. T., Chow, W. Y. \& Gardner, G. B. (2000). $A d v$. Mater. 12, 767-770.
Kitagawa, S., Okubo, T., Kawata, S., Kondo, M., Katada, M. \& Kobayashi, H. (1995). Inorg. Chem. 34, 4790-4796.

Liu, Y. H., Lu, Y. L., Wu, H. C., Wang, J. C. \& Lu, K. L. (2002). Inorg. Chem. 41, 2592-2597.
Lu, J. Y., Lawandy, M. A., Li, J., Yuen, T. \& Lin, C. L. (1999). Inorg. Chem. 38, 2695-2704.
Noro, S., Kitaura, R., Kondo, M., Kitagawa, S., Ishii, T., Matsuzaka, H. \& Yamashita, M. (2002). J. Am. Chem. Soc. 124, 2569-2583.
Prior, T. J. \& Rosseinsky, M. J. (2001). Chem. Commun. pp. 495-496.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1996). SHELXL97. University of Göttingen, Germany.
Shi, Z., Zhang, L. R., Gao, S., Yang, G. Y., Hua, J., Gao, L. \& Feng, S. H. (2000). Inorg. Chem. 39, 1990-1993.
Swieqers, G. F. \& Malefetse, T. J. (2000). Chem. Rev. 100, 3483-3537.
Tao, J., Zhang, Y., Tong, M. L., Chen, X. M., Yuen, T., Lin, C. L., Huang, X. \& Li, J. (2002) Chem. Commun. pp. 1342-1343.
Yaghi, O. M., Li, H. L. \& Groy, T. L. (1996). J. Am. Chem. Soc. 118, 90969101.

[^0]: (C) 2004 International Union of Crystallography

